Jumat, 16 November 2018

WE LOVED EKSPONEN

Assalamu'alaikum wr. wb.
Selamat datang di blog saya lagiiiiiiii✰✰✰✰✰✰✰✰✰✰✰❤

 

Pengertian eksponen  

     Definisi eksponen adalah nilai yang menunjukkan derajat kepangkatan (berapa kali bilangan tersebut dikalikan dengan bilangan tesebut juga). Bentuk an (baca: a pangkat n) disebut bentuk eksponensial atau perpangkatan. a disebut dengan bilangan pokok (basis) dan n disebut eksponennya. Jika n adalah bilangan bulat positif maka definisi dari eksponen

an = a x a x a x ….. x a (a sejumlah n faktor)
contoh : 34 = 3 x 3 x 3 x 3 = 81
dalam eksponen, bilangan pangkat tidak selamanya selalu bernilai bulat positif tetapi dapat juga bernilai nol, negatif, dan pecahan.
lanjut pada bentuk'' eksponen gaiss

Eksponen (pangkat) nol

Jika a ≠ 0 maka a0 = 1
contoh
10 =1
20 =1
1283840 =1
x0 =1
Semua bilangan yang dipangkatkan 0 hasilnya adalah 1
kecuali 0.

Eksponen (pangkat) negatif dan pecahan

Jika m dan n adalah bilangan bulat positif maka
(i) a-n = 1/an
contoh
2-3 = 1/23 = 1/8
(ii) a1/n = n√a
contoh
21/2 = √2
21/3 = 3√2
Setelah teman-teman berkenalan dengan eksponen, kita lanjut ke sifat-sifatnya.

Sifat-sifat Eksponen

  1. am . an = am+n 
    Jika kalian punya bilangan dasar sama dengan pangkat berbeda maka hasil perkaliannya adalah bilangan dasar dengan pangkat hasil penjumlahan pangkat masing-masing bilangan.
    Contoh:
    x4 . x6 = x(4+6) = x10
    74 . 7-2 = 7(4-2) = 72
  2. am/an = am-n
    Kebalikan dari sift pertama kalau bilangan dasar yang sama membagi salah satu, maka pangkatnya dikurangi
    Contoh:
    x1/2 : x1/4 = x(1/2-1/4) = x1/4
  3. (am)n = amn
    Suatu bilangan berpangkat jika dipangkatkan lagi maka pangkat akhirnya adalah perkalian pangkatnya
    Contoh:
    (32)3 = 32.3 = 36
  4. (am.bn)p = amp. bnp
    Contoh:
    (x2.y3)2 = x2.2 . y3.2 = x4.y6
  5. (am/an)p = amp/anp
    Contoh
    (23/24)3 = 23.3/24.3 

  6. BENTUK PERSAMAAN EKSPONEN

    1. af(x) = 1  ( Jika af(x) = 1 dengan a>0 dan a 0, maka f(x) = 0 )
    2. af(x) = ap  Jika af(x) = ap  dengan a>0 dan 0, maka f(x) = p )
    3. af(x) = ag(x)  Jika af(x) = ag(x)  dengan a>0 dan 0, maka f(x) = g(x) )
    4. af(x) = bf(x)  Jika af(x) = bf(x)  dengan a>0 dan 1, b>0 dan b 1, dan ab maka f(x) = 0 )
    5. A(af(x))2 + B(af(x)) + C = 0 ( Dengan af(x) = p, maka bentuk persamaan diatas dapat diubah menjadi persamaan kuadrat : Ap2 + Bp + C = 

  7. Contoh Soal Persamaan Eksponen Bentuk af(x) = 1
    1. Tentukan himpunan penyelesaiian dari :
    a.      5x-10 = 1
    b.      2x²+3x-5 = 1

    Jawab :
    a.      5x-10  = 1
    3 5x-10  = 30
    5x-10 = 0
    5x      = 10
    x        = 2

    b.      2x²+3x-5 = 1
    2 2x²+3x-5 = 20
    2x2+2x-5 = 0
    (2x+5) (x-1) = 0
    2x+5 = 0  |    x-1 = 0
    X = -²⁄₅     |    x = 1
    2.       Contoh Soal Persamaan Eksponen Bentuk af(x) = ap
    Tentukan himpunan penyelesaian dari :
    a.      2x-1 = 625
    b.      2x-7 = ⅓₂
    c.       √33x-10 = ½₇√3

    Jawab :
    a.  2x-1 = 625
    5 2x-1 = 53
    2x-1 = 3
    2x    = 4
    x      = 2

    b. 2 2x-7 = ⅓₂
    2 2x-7 = 2-5
    2x-7 = -5
    2x    = 2
    x      = 1

    c.       √33x-10 = ½₇√3
    33x-10⁄2 = 3-3.3½
    33x-10⁄2 = 3-⁵⁄₂
    3x-10⁄2 = -⁵⁄₂
    3x-10     = -5
    3x           = 5
    x             = ⁵⁄₃
    3.       Contoh Persamaan Eksponen Bentuk af(x) = ag(x)
    Tentukan himpunan penyelesaian dari :
    a.      x²+x = 27 x²-1
    b.      25 x+2 = (0,2) 1-x

    Jawab :
    a.      x²+x = 27 x²-1
    3 2(x²+x) = 3 3(x²-1)
    2 (x2+x) = 3 (x2-1)
    2x2 + 2x = 3x2 – 3
    x2 – 2x – 3 = 0
    (x – 3) (x + 1) = 0
    x = 3           x = -1       Jadi HP = { -1,3 }
    b.      25 x+2 = (0,2) 1-x
    52(x+2) = 5 -1(1-x)
    2x + 4 = -1 + x
    2x – x = -1 – 4
    x         = -5              Jadi HP = { -5 }
    4.       Contoh Persamaan Eksponen Bentuk af(x) = bf(x)
    Tentukan himpunan penyelesaian dari :
    a.      x-3 = 9 x-3
    b.      7x²-5x+6 = 8x²-5x+6

    Jawab :
    a.      x-3 = 9 x-3
    x-3  = 0
    x   = 3
    Jadi HP = { 3 }
    b.      7x²-5x+6 = 8x²-5x+6
    x²-5x+6 = 0
    (x-6) (x+1) = 0
    x = 6      x = -1
    Jadi HP = { -1,6 }
    5.       Contoh Persamaan Eksponen Bentuk A(af(x))2 + B(af(x)) + C
    Tentukan himpunan penyelesaian dari :
    a.      22x – 2x+3 + 16 = 0

    Jawab :
    a.      22x – 2x+3 + 16 = 0
    22x – 2x.23 + 16 = 0
    Misalkan 2x = p, maka persamaannya menjadi
    P2 – 8p + 16 = 0
    (p-4) p-4)     = 0
    p                   = 4
    Untuk p = 4, jadi
    2x = 4
    2x = 22
    x   = 2

    Jadi HP = { 2 }

Fungsi Eksponen dan Grafiknya

fungsi eksponene merupakan pemetaan bilangan real x ke ax dengan a > 0 dan a ≠ 1. Jika a > dan a ≠ 1, x ∈ R maka f:(x) = ax disebut sebagai fungsi eksponen.
Fungsi eksponen y = f(x) = ax; a> 0 dan a ≠ 1 mempunyai sifat-sifat
  • Kurva terletak di atas sumbu x (definit positif)
  • memotong sumbu y di titik (0,1)
  • mempunyai asimto datar y = 0 (sumbu x)
  • grafik monoton naik untuk x > 1
  • grafik berbentuk monoton turun untuk 0<x<1
grafik monoton naik dan turun fungsi eksponen
Contoh Soal:
Jika f(x) = 2x+1 tentukan nilai dari f(3) dan f(-3)
f(3) = 23+1 = 24 = 16
f(-3) = 2-3+1 = 2-2 = 1/4 = 0,25

Persamaan Fungsi Eksponen

ada beberapa bentuk persamaan eksponen diantaranya adalah
(i) jika af(x) = ap maka f(x) = p
(ii) jika af(x) = ag(x) maka f(x) = g(x)
Contoh Soal
tentukan nilai dari x agar 32x-3 = 0
jawab
32x-3 = 0
32x =31
2x = 1 maka x = 1/2
tentukan nilai x dari persamaan 35x-1 – 27x+3 = 0
jawab
35x-1 – 27x+3 = 0
35x-1 = (33)x+3
35x-1 = 33x+9
5x-1 = 3x + 9
2x = 10
x = 5
cari himpunan penyelesaian dari persamaan eksponen 32x+2 + 8.3x -1 = 0
jawab
32x+2 + 8.3x -1 = 0 untuk memudahkan mengerjakannya sobat bisa memisalkan 3x  = a
32x+2 + 8.3x -1 = 0
32x 32+ 8.3x -1 = 0
(3x)2 32+ 8.3x -1 = 0
9a2 + 8a -1 = 0 kita faktorkan persamaan kuadrat tersebut
(9a-1)(a+1) = 0
9a-1 = 0
9a = 1
a = 1/9
atau
a + 1 = 0
a = -1
kembali ke permisalan awal 3x  = a
3x  = 1/9 maka x = -2
3x = -1 (tidak memenuhi) jadi nilai x yang memenuhi adalah -2

RANGKUMAN EKSPONEN


https://tanya-tanya.com/wp-content/uploads/2016/07/eks1.png


HEMMM...hemmm
gimana?
gimana?
yak pembahasan kali ini cukup mengasyikan ya kawan, eksponen? tentunya udah terdefinisi yaa apa itu eksponen. dan udah admin cantumkan sekalian RANGKUMANNYA. JADII ❤❤❤❤❤❤❤❤



sumber:
https://tanya-tanya.com/rangkuman-contoh-soal-pembahasan-eksponen-logaritma/
http://rumusdasarmatematika.blogspot.com/2014/10/persamaan-eksponen-dan-contoh-soal.html
https://rumushitung.com/2013/09/18/eksponen-matematika-sma/

Tidak ada komentar: